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1. INTRODUCTION

Let H n (n = 0, 1, ...) be the set of all algebraic polynomials ofdegree n or less.
We define Hn.k , n = 0, 1, ... ; k = 0, I, ... , n, to be the set of all PnE Hn such
that P~k)(X) >°on the interval [0,1]. Fori E qo, 1], the degree of approxima
tion toI by polynomials from H n is

En(f} = inf III - Pnll,
PnEHn

where 1\ '11 is the uniform norm.
Similarly, ifPk-I) exists and is increasing on [0, 1],

En.k(f) = inf III - Pnll
PnEHn, k

is the degree of approximation to Iby polynomials from Hn , k'

The purpose of this paper is to find some upper bounds for En,k(f).
O. Shisha [5] examined this problem and proved the following.
If 1,;;; k,;;;p and

pk)(x) > 0, IpP)(x) I ,;;; M for 0,;;; x,;;; 1,

then for every integer n (>p),

En.k(f) ,;;; ~~kW(!(P), ~)

where C depends upon p and k. w(g, h) is the modulus of continuity of the
function g.

The estimates in this paper are in many cases better than Shisha's estimate.

t This paper is part of the author's doctoral dissertation at Syracuse University. The
research was completed while the author was holding a NASA traineeship under Training
Grant Ns G(T)-78, and with partial support of Contract No. AF 49 (638)-1401 of OSR,
U.S. Air Force. It was directed by Professor G. G. Lorentz to whom the author remains
grateful for his many valuable suggestions.
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2. THE MAIN THEOREMS

The first of our theorems does not assume thatfis differentiable.

THEOREM 1. Let fEe [0, 1] have the property

f(X2) - f(xI) ~ p > 0 'fO 1
P' 1 < XI < X2 < .

Xl-XI
Then

for n sufficiently large.
(w is the modulus ofcontinuity offon [0, 1].)

(1)

(2)

Proof Let En(f) = En for brevity. Choose n sufficiently large to insure that
3Enlp < 1. Choose Qn E Hn so that Ilf - Qnll = En. We have then, using (1)
and the definition of Qn

Qn(X2) - QixI) >f(X2) - f(xa -If(xI) - Qn(xI)!-lf(X2) - Qn(X2) I
> P(X2 - XI) - 2En> En > 0 if X2 - XI> (3En)lp. (3)

Consider the polynomial of degree at most n,
p f{3(X)

Pix) = 3E Qit) dt
n ",(x)

where IX(X) = (1 - 3Enlp) X and f3(x) = IX(X) + 3Enlp. We have 0 < IX(X) < f3(x) < 1
if 0 < X < 1. Using (3), we see that

Pn'(x) = 3~n (1 -3:n)[Qn(f3(x)) - Qn(IX(X))]

> 3~J1-3:n
) En> 0 for 0< X < 1. (4)

If IX(X) < t < f3(x), then, using IX(X) < x < f3(x), we deduce

If(x) - f(t)1 < w C:n). (5)

Using (5) and the definition of Qn we have

If(x) - Pn(x)I= 3~ If{J(X) [f(x) - Qn(t)] dtl
n ",(x)

f
{J(X) f{J(X)

< 3~ If(x) - f(t)1 dt + 3~ !f(t) - Qn(t)! dt
n ",(x) n ",(x)

< w C:n) + En. (6)

This gives (2).
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The following is a corollary to Theorem 1.

COROLLARY. Iff satisfies (1) and, in addition, belongs to a Lipschitz class
Lip I IX, 0 < IX";;;; 1, then

(7)

for n sufficiently large.
This follows from the estimate

En(f) ,.;;;; const. n-<z.

In the following two theorems we use the degree of approximation of a
function ep by its Bernstein polynomial Bn(ep) (see [2]), expressed in terms of
the modulus of continuity of ep or of ep'.

THEOREM 2. Suppose thatf' E qo, 1] andf'(x);;;. p > 0 on [0,1]. Then

En, I (f) ,.;;;; 2~/2 En-l(f')

ifn is sufficiently large.

(8)

Proof Let Pn- l E Hn- l be the polynomial of best approximation to f' on
[0,1], n = 1, 2, .... Choose n so large that En-l(j'),.;;;; p/2. Then

Qn-I(X) = Pn-l(x) - En-l(f');;;. 0 on [0,1],

and 11f' - Qn-dl = 2En- I(f')·
Define

ep(x) = f(x) - f: Qn_l(t)dt.

Then ep'(x) = f'(x) - Qn-I(X);;;' 0 on [0,1], and IWII = 2En- I (f'). Hence,
ep E LipM 1, where M = 2En- I (f'). Then

Ilep - Bn(ep)ll.;;; 4~/2 ·2En- I (f'),

by [2], p. 20. That is, Ilf- Pnll.;;; (5/2nI/2
) En-I(f') where

Pn(x) = BnCep, x) + f: Qn-l(t) dt.

But Bn'(ep,x);;;. °on [0,1], by [2], p. 23. Hence, we have

Pn'(x) = Qn-I(X) + Bn'(ep, x);;;. 0 on [0,1].

This gives (8).
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THEOREM 3. Let k"> 2 be an integer, and suppose that jlk) E ero, 1] and
f<k)(X)"> p > °on [0,1]. Then,for n sufficiently large, we have

(9)

Proof We first establish (9) for k = 2. We assume that f" E C [0,1] and
f"(x)"> p > °on [0,1], and prove that for all sufficiently large fl,

(10)

Let Q:-2 be the polynomial of best approximation from Hn- 2tof" on [0,1].
Choose n large enough to insure that En-if") ,;;; pj2.

Define Qn-ix) = Q:_2(X) - En- 2U')· Then Qn-2(X)">° on [0,1] and
Ii!" - Qn-211 = 2En_ 2(!").

Define

1>1(X) = f'(x) - J: Qn_2(t)dt.

Then 1>1'(X) = !"(x) - Qn-2(X)"> °on [0,1], and //1>1'11 = 2En- 2U")·
Hence, 1>1 E LipM 1, where M = 2En- 2(!"). Therefore, by [2], p. 21,

111> - Bi1»/1 ,;;; 4
3
172 ·2En- 2U")~ = 2

3
En- 2U"),n n n

where

1>(x) = J: 1>1(t)dt = f(x) - Rix)

and Rn is a polynomial of degree at most n with the property Rn"(x) "> 0.
Hence, Ilf - Pnll ,;;; (3j2n) En- 2(!"), where

Pn(x) = Rix) +BnC1>, x).

But, P/(x) = R/(x) + B/(1), x)"> °on [0,1]. Hence, we have (10).
This shows that for n sufficiently large there is a polynomial Pn- k+2 such

that P:-k+2(X) "> °on [0,1] and

It now follows by integrating k - 2 times, that Ilf - Qnll< (2jn) En_k(f(k»)
(for n sufficiently large), where Qn is some polynomial of degree at most n.
This completes the proof.
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3. REMARKS

We shall compare our results with those of Shisha and with estimates
available from the theory of Bernstein polynomials. Letf satisfy (1) on [0,1],
and suppose thatfE LiPMIX (0 < IX < 1). Then from [2], p. 23, we see that the
Bernstein polynomials Bn(f,x) are increasing on [0,1]. Furthermore, by [2],
p. 20, we have

Hence,
En, I (f) < iMn-a/2.

The corollary to Theorem 1 gives

En, I (f) < Kn-a2

X E [0,1].

(11)

(12)

for n sufficiently large. This is better than (11) if IX> 1(2.
Now suppose that f' exists and 0 < p <f'(x) < M for 0 < x < 1. Then

f ELiPM 1 andf satisfies (1). Hence (2) gives

(13)

(14)

for n sufficiently large. Using Jackson's theorem we obtain En, I (f) < CMn-\
while Shisha's estimate gives only

En, I(!) < const. w (f',~).

Similar comments apply to functions that satisfy the conditions ofTheorem
2 or 3.

Another source ofestimates for En ,k(f) are the results ofTrigub ([6], p. 263)
(see also Malozemov [3]). As a special case, these results contain the following.
Letj<rl be continuous on [-1,+1]. Then there exists a sequence QnCx), n;;;. r,
of polynomials of degree n or less, such that for 0 < s < r

Ij<sl(x) - Q~Sl(x)1 < Crns- r w (prJ, l),
where Cr is a constant depending only upon r. It follows from this that if
f(kl(x) > 0 on [-1,+1], k < r, then

En,k(f) < Crn-rw (j<r\~)

for n sufficiently large. Here En,k(f) is, of course, defined for [-1,+1] in the
same way as for [0,1].
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